


| 2

Introduction

Part 1: Understanding API Gateways

What is an API Gateway?

Core Capabilities to Expect from Any API Gateway

API Gateways vs. Proxies, Load Balancers, and Ingress Controllers

Benefits of API Gateways

Business Benefits

Operational Benefits

Part 1 Wrap Up

Part 2: Critical Trends inApplicationDevelopment andAPI GatewayRequirements

The Cloud Native Revolution

The DevOps and GitOps Revolutions

Modern API Gateway Case Studies

Part 2 Wrap Up

Part 3: Choosing YourAPI Gateway

Vendor Comparison

Understanding API Gateway Pricing Models

Checklist: Considerations When Choosing a Modern API Gateway

Planning Considerations

Day 0 Considerations

Day 1 Considerations

Day 2 Considerations

Conclusion

P.3

P.4

P.4

P.5

P.5

P.6

P.6

P.7

P.7

P.8

P.8

P.8

P.9

P.9

P.10

P.10

P.12

P.12

P.12

P.13

P.13

P.13

P.14



| 3

In today's cloud-native world, APIs are everywhere. According to a SlashData survey,
almost 90 percent of developers use APIs to power the applications they build—
including both external APIs, which allow applications to connect to third-party
services and resources, and internal APIs and microservices within a company's own IT
estate.

Given the pervasive role that APIs play in modern operations, having a way to
simultaneously manage and secure API transactions and microservices is a critical
consideration for many organizations today.

That's where API gateways come in. API gateways route, secure, and manage API and
microservices transactions. By acting as intermediaries in API and microservices
requests, API gateways can help to centralize, monitor, route, and secure the
tremendous volumes of transactions that power operations at a typical organization
today.

All API gateways provide the core capabilities we just mentioned. However, different
API gateway solutions work in different ways. Depending on your business's needs and
priorities, one API gateway may be a better choice than another.

We've prepared this buyer's guide to help decision-makers navigate the complex
landscape surrounding API gateways today. In the following pages, you'll learn what
API gateways do, how they benefit modern businesses, and which key considerations
to weigh when comparing API gateway solutions. We'll also compare some of the
leading API gateways available on the market today and explain where each one excels.

The guide includes threemain parts:

Understanding API Gateways explains what API gateways are and why
they're essential for modern businesses.

Part 1:

Choosing an API Gateway offers guidance on selecting an API gateway
from the leading solutions available today.

Part 3:

Critical Trends in Application Development and API Gateway
Requirements discusses the changing requirements of modern
application infrastructures. It also explains what API gateways must do
to meet these challenges.

Part 2:

https://www.developernation.net/resources/reports


| 4

An API gateway sits in the critical path of a data flow
to accept incoming requests from clients, route
them to the appropriate services, and send
responses back to the clients.

Importantly, the transactions that API gateways
support don't necessarily need to take the form of
formal API requests made using API protocols (like
REST or gRPC). Despite the nomenclature, API
gateways can manage and secure any request to an
application service or microservice, even if it's not
an API request.

Because API gateways sit between clients and
services, they provide a central, consolidated location
to which clients direct all requests, and from which all
responses are directed back to clients. They can
monitor the status of requests and help teams detect
problems like malformed API calls. They can also
assist with authentication and monitoring. Finally,
API gateways can track and help respond to security
problems, such as malicious requests or attempts to
overwhelm a service with a flood of traffic.

Strictly speaking, you don't need an API gateway to
use APIs or microservices. You could allow clients to
make API calls to services directly. However, that
approach is inefficient by modern standards and
considered a design anti-pattern. It forces teams to
duplicate code across services. It also significantly
complicates API management.

In addition, it defies the Do Not Repeat Yourself
(DRY) principle, which calls for implementing
common policies around security or observability
that apply to a myriad of services. With an API
gateway, teams can enforce security policies across
all exposed services, minimizing the risk of
oversights or omissions.

So, while you may be able to get by without an API
gateway if you have just a handful of services, you'll
likely want an API gateway that brings efficiency to
security and observability, while freeing your teams
to focus on creating true business value rather than
tedious operations.

What is an API Gateway?

Even for seasoned engineers, understanding exactly what an API gateway does and why it's important can be
challenging. After all, API gateways weren't an important part of conventional technology stacks, so many teams
lack experience working with them. But as this section explains, API gateways play an absolutely vital role in
enabling modern approaches to application deployment.

Part 1.



| 5

API gateways deliver six key types of
capabilities:

Security: API gateways can help intercept
and block malicious requests. They also support
certificate management and can operate as
Web Application Firewalls (WAFs), helping
prevent malicious requests from reaching
backend services.

Authentication and authorization: By
using API gateways to authenticate and
authorize requests based on standards like
OIDC, JWT, and OAuth—rather than relying on
individual services to handle those tasks—
organizations gain a consistent, centralized
approach to ensuring that clients are
authorized to make requests before the
requests are served. This also helps reduce
security risks.

Trafficmanagement: API gateways help to
route traffic efficiently across a range of
services based on load balancing, circuit
breaking, rate limiting, and so on. They can also
reduce the risk of performance issues due to
malformed requests and deliver active health
checks and rate limiting to keep traffic flowing
smoothly. In addition, API Gateways can
support A/B testing and canary releases, which
also bring efficiency and lower risk to
application deployment.

Certificatemanagement: Issuing TLS
certificates is typically a manual process that
has to be performed for each service. An API
gateway, however, can centralize and even
automate this process so your services are
never left without encryption.

Caching: Data caching within API gateways
helps applications perform better and teams to
move faster.

Collaboration: When you choose an API
gateway that provides a developer portal with
OpenAPI support, you help developers work
together with each other and other
stakeholders efficiently and continuously. You
also benefit from the ability to integrate some
API gateways with Git-based configuration
management.

Core Capabilities to Expect from
Any API Gateway

API gateways provide capabilities that overlap
in some ways with certain other types of
solutions; however, there are fundamental
differences between these tools:

Reverse proxies also route incoming
requests to backend services; in fact, API
gateways are essentially one form of reverse
proxy—but they specialize in serving API and
microservices requests, whereas other
reverse proxies are general-purpose
solutions that don't address the unique
management and security challenges of API
andmicroservices requests. Additionally,
reverse proxies usually only support traffic to
Web applications, as opposed to managing
requests for a wide variety of services and
protocols, as API gateways can do.

A load balancer's main job is to accept
incoming traffic and route it to multiple
instances of the same backend service,
with the goal of ensuring that requests are
balanced according to your load balancing
strategy. API gateways can typically do this
as well; however, API gateways provide
many additional capabilities—such as
security monitoring and observability—that
load balancers lack.

Like API gateways, ingress controllers can
accept incoming requests and route them
to services. However, ingress controllers
typically only support HTTP requests that
are formatted in specific ways. API
gateways are more flexible; they support
multiple protocols, including but not limited
to HTTP, and they can handle requests
formatted in virtually any way.

For these reasons, it would be a mistake to
think of API gateways as a mere alternative to
or substitute for other types of solutions that
can manage and route requests on a network.
API gateways provide capabilities on top of
those provided by the other solutions.

If your goal is only tomanageHTTP requests, an
ingress controller, reverse proxy, or load balancer
mightmeet your needs. But if you require
support for a range of protocols, and if youwant
extended features (security, distributed rate
limiting, etc.), an API gateway is your best option.

API Gateways vs. Proxies,
Load Balancers, and Ingress
Controllers

https://traefik.io/glossary/reverse-proxy/
https://traefik.io/glossary/load-balancing-101-network-vs-application/
https://traefik.io/glossary/kubernetes-ingress-and-ingress-controller-101/


| 6

API gateways provide a range of benefits. Let's break them down based on two key categories: business benefits
and operational benefits.

Business Benefits
From a business perspective, API gateways enable:

Agility: A centralized point for managing API and microservice routing and security
configuration makes it easier to adapt to market changes, introduce new features, and stay
ahead of competitors.

Digital transformation: Because APIs and microservices have become a fundamental
component of digital strategies as businesses shift from monolithic, VM-centric solutions into
distributed, cloud-native alternatives, managing requests efficiently and securely is critical for
ongoing digital transformation success.

Revenue generation: Exposing services and data to external developers or partners with
controlled access via API gateways can open new opportunities for generating revenue or
selling services.

Cost efficiency: Features like caching and rate limiting via a centralized controller make it
easier to protect the financial interests of the business.

Security and compliance: API gateways mitigate security and compliance risks by
providing authentication, authorization, and encryption mechanisms.

Enhanced customer experience: With a consistent, reliable, and high-performance
experience, customers are more likely to keep coming back to your business.

Innovation and partnerships: API gateways make it easy to adopt new technology and
integrate with external services quickly with help from APIs.

Scalability and growth: The ability to handle increased traffic efficiently with API
gateways helps ensure that your business can keep growing steadily.

Competitive advantage: Stay ahead in technology adoption by differentiating offerings
and capturing market share through a more flexible, scalable, and modern strategy.

Benefits of API Gateways



Operational Benefits
For DevOps, DevSecOps, and IT teams, API gateways provide a range of operational benefits:

Centralizedmanagement: All services can be managed and secured using a central tool,
even in complex architectures, saving IT teams enormous time and effort.

Simplified client access: A consistent API interface makes it easy for IT departments to
expose services to clients, without requiring a bespoke implementation for each client or
service.

Security enhancements: Centralized security monitoring and policy enforcement make
it more efficient for IT and DevSecOps teams to manage security risks.

Request and response transformation: API gateways can automatically transform
requests and responses to speed up the time to market.

Observability: API gateways provide a central vantage point for collecting logs and
metrics, which engineers can then analyze to maintain service quality and security. By
centralizing the management of observability, teams simplify what can otherwise be a
complex operation.

Canary releases and blue/green deployment: By helping to enable canary releases
and blue/green deployments—which reduce the risk of problems during application updates—
API gateways support smooth rollouts and minimize disruptions that impact end-users.

Scalability: No matter how many services you have to support or how many requests they
receive, most API gateways can scale automatically to manage them effectively. As a result,
applications can scale seamlessly, without relying on engineers to add new infrastructure or
service instances manually.

Third-party integrations: Rather than having to set up custom integrations with each
third-party service, IT teams can use API gateways to provide a central integration hub that
saves time when rolling out application stacks.

API gateways are much more than management interfaces. They can help to

support multiple aspects of application deployment, security, scaling,

observability, and more. They also simplify operations by providing

centralized configuration and enforcing strong boundaries between

development and operations work.

Ultimately, they free engineers to focus on creating business value instead

of managing tedious, manual tasks, which in turn leads to faster time to

market.

| 7



| 8

The Cloud Native Revolution

The concept of API gateways emerged well over a
decade ago, before cloud native computing became
widespread. As a result, many API gateways lack the
ability to keep pace with later-born cloud native
environments that may include hundreds of servers,
services, and deployments per day. While there are
exceptions, notably Traefik Labs’ API gateway which
was built as a cloud native solution, many still reside
on bare-metal or virtual servers rather than running
in containers, and they can't scale or adapt
efficiently by cloud-native standards.

Most applications are now migrating to the cloud, at
least in part, but this is a long process. In many
cases businesses are not yet fully in the cloud but
remain dependent on hybrid models that include a
mix of legacy and cloud native technology.

One major benefit of the cloud native era is that
solutions are built on standards that prioritize
interoperability. As a result, teams benefit from a
large array of choices and can reduce their risk of
vendor lock-in.

So to thrive in this modern world, API gateways
must support applications deployed in any
environment, using any cloud architecture alongside
other mission critical tools. They must be able to
route requests to microservices hosted in a
Kubernetes cluster in a public cloud, as well as
requests to monolithic applications hosted on-prem.
And to deliver maximum benefit, API gateways
should enforce the same security controls and
deliver the same governance capabilities across all
of the applications they help manage—a critical
benefit for organizations seeking to tame the
complexity of hybrid cloud and multi cloud
deployment models.

The DevOps and GitOps
Revolutions

Likewise, API gateways must keep pace with
innovations in application development and delivery,
such as the adoption of DevOps and Continuous
Integration/Continuous Delivery (CI/CD).

For example, using GitOps, the CI/CD strategy that
many DevOps engineers use to develop, test, build,
and deploy code, can connect seamlessly to API
gateways. This approach is not viable in every case,
but when it is used, it enables teams to control and
even automate their routing, load balancing,
security policies, and other configurations (including
any custom objects) via a declarative approach.
Teams then manage the entire lifecycle of the
system within reviewable change requests, avoiding
human errors and allowing for quick rollbacks.

But as stated earlier, many API gateways were
designed before the cloud-native era. This means
they don't take full advantage of these declarative
approaches to configuration management.

GitOps is revolutionizing operations, making
complex deployments and configurations auditable,
repeatable, and scalable. For DevOps and platform
teams to capitalize on these benefits, their API
gateways must be fully declarative, ideally without
requiring vendor-specific annotations.

We just learned all about what API gateways are and why they're important. But we didn't delve into nuances
surrounding how new trends in application development are leading to new requirements. Let's explore that topic
by looking at what API gateways must do to deliver optimal value in the face of ever-evolving development
trends and strategies.

Part 2.

https://traefik.io/solutions/api-gateway/


Cloud native solutions provide many opportunities, but they also create

technical and organizational challenges. As a result, businesses need API

gateways designed to make the most of cloud native environments and

standards, while also offering compatibility with the legacy and hybrid

technologies that remain important in many organizations.

Modern API Gateway Case Studies

Now that we’ve covered the role of API gateways and the trends they must adapt to, let's look at some examples of
how real companies have used and benefited frommodern API gateways, in these cases Traefik Labs’ API Gateway.

Simplifying Network
Management at IoT Scale

By design, networking is
complex. But with the Internet
of Things (IoT), network
complexity—and, by extension,
the complexity of network
management solutions—is truly
profound. With hundreds of
thousands of endpoints and
tens of thousands of
customers, ABAX had to
centralize and automate
operations.

To simplify operations and
consolidate the company’s
networking tools, the business
adopted an API gateway model.
The move boosted performance
and security through
capabilities like token-based
authentication and data
caching.

Lowering Costs for High-
Volume Retail Traffic

Adeo’s LeroyMerlin, an
international home improvement
retailer, was struggling tomanage
network trafficcost-effectively, due
especially to theveryhighvolume
of requests that ithad tosupport—
asmanyas 100,000persecond. In
addition, todeliveragreatcustomer
experience,Adeo targeted latency
ratesof just20milliseconds.

Implementing a modern API
gateway helped the company
not only to meet, but to exceed,
these goals. The efficiency of a
centralized hub for managing
service requests enables the
business to support up to
200,000 requests per second
while also achieving uptime
rates of 99.99 %. What’s more,
Adeo integrated its API gateway
withmonitoring and observability
software to help detect
performance issues, as well as
identify andmanagesensitivedata.

Managing Hybrid
Infrastructure In the
Telco Industry

For Axione, amajor French telco
provider, streamlining connectivity
across a complex infrastructure
that includedmultiple public
clouds, private data centers, and
cloud native and legacyworkloads
running alongside one another
was a key challenge.

The ability to automate
configuration management with
help from a GitOps-driven API
gateway solution helped the
company rise to this challenge.
Now, Axione benefits from
simplified service deployment,
automated service discovery,
single sign-on functionality,
end-to-end encryption of
network data across its disparate
environments, and a 20 %
reduction in network latency—a
key accomplishment in a vertical
where delivering fast, reliable
connectivity is paramount.

| 9



| 10

Overview Full-fledged
modern API
gateway based
on a wildly
popular cloud-
native open-
source proxy

A modern API
gateway based
on a hosted
control plane
deployment
model

Modern API
gateway with a
special focus
on treating
asynchronous
and
synchronous
APIs equally

A Kubernetes-
based API
gateway
designed
especially for
Kubernetes
ingress control

A solution
mostly
designed to
function as a
reverse proxy
but with some
API gateway
features

A fully
managed API
gateway
service, tightly
integrated into
the AWS
ecosystem

Ease of Use

Fully
declarative,
human-
readable
configuration
with simple
defaults and
linter
assistance to
get started
quickly and
catch errors
early. Web UI
and pre-built
Grafana
dashboards are
also included.

Although a
declarative
configuration
approach is
available, its
capabilities are
limited, it is
complex to
scale to many
APIs, and it is
tailored
primarily
toward UI-
based
operations.

The declarative
configuration is
limited with
little
documentation,
and the web UI
is complex. It
includes many
moving parts
that require
administration
and is taxing on
resources.

There isn’t a
web UI to
check or
modify the
current state,
which can be
challenging for
novice users.
Resource
consumption
can also be an
issue since it’s
Envoy-based.

It doesn’t have
a web UI but
can be added
by third-party
tools not
considered
enterprise-
ready.
Configuration
changes need
proxy reloads.
Extensions are
LUA-based and
sometimes
require custom
compilation
from source
code.

It has a web UI,
and auxiliary
tools allow for a
declarative
approach.
Extensive
documentation,
tutorials, and
training are
available.

Breadth of API
Gateway
Features Provides

routing,
security,
observability,
and more

Provides
routing,
security,
observability,
and more

Provides
routing,
security,
observability,
and more

Provides all
core API
gateway
capabilities,
but mostly only
within
Kubernetes
environments

Provides some
capabilities,
but advanced
features (like
security policy
enforcement)
are not
available

Provides all
core API
gateway
capabilities,
but
customization
and
extensibility
options are
limited

Features and
capabilities

Traefik Labs
API Gateway

Kong
Konnect

Gravitee API
Gateway

Ambassador
Edge Stack

NGINX Plus
API Gateway

AWSAPI
Gateway

High

High High High

HighLowLowLowMedium

Medium Medium Medium

Now that we've covered the basics of API gateways and the challenges they need to address, let’s explore the
key question that you need to answer: “How do you choose the right solution?”

This part of the guide highlights the main API gateway solutions available today and what you need to consider
when evaluating them.

Vendor Comparison

First, let's take a detailed look at major API gateway solutions and how they compare.

Part 3.



| 11

Orchestrator
Compatibility

Designed to be
cloud native
from the start
and supports
all major
enterprise
tools including
HashiCorp
Vault, Azure
Service Fabric,
Docker Swarm,
Amazon ECS,
and all
Kubernetes
distributions

High Medium Medium Medium Medium Low

Not originally
designed to
support cloud-
native
computing
stacks but can
run inside
Kubernetes

Not originally
designed to
support cloud-
native
computing
stacks but can
run inside
Kubernetes

Not originally
designed to
support cloud-
native
computing
stacks but can
run inside
Kubernetes

Not originally
designed to
support cloud-
native
computing
stacks but can
run inside
Kubernetes

It doesn’t
provide any
integration
with other
orchestrators
and only works
inside AWS.

GitOps
compatibility
and API
management
features

Enables
GitOps-based
approach to
end-to-end API
management

High High

GitOps-based
API
management is
possible but
requires
additional tools

Medium

Medium

GitOps
compatibility is
not a major
focus

Enables
GitOps-based
approach to
end-to-end API
management

No focus on
API
management

LowLow

GitOps-based
API
management is
possible but
requires
additional tools

Medium

Deployment
Flexibility

Supports any
common cloud
or on-prem
architecture

High High High High

Supports any
environment,
but the control
plane is
available only
as a hosted
service

Supports any
common cloud
or on-prem
architecture

Supports any
common cloud
or on-prem
architecture

Supports any
common cloud
or on-prem
architecture

Only available
within AWS

Low

Pricing Model Node-based -
Flexible to
accommodate
other models
per customer
choice

Mostly
request-based
- Some
features and
plugins cost
extra

Pricing details
for most
scenarios not
publicly
available

Request-based
- Free for up to
10,000
requests per
month; pricing
for higher-
volume use
cases not
publicly
available

Pricing details
vary widely
depending on
the
deployment
type

Request-based
pricing but also
charges for the
data
transferred out
and the used
cache size

Licensing Open source
core

Open source
core

Open source
core

Open source
core

Open source
core

Proprietary

Features and
capabilities

Traefik Labs
API Gateway

Kong
Konnect

Gravitee API
Gateway

Ambassador
Edge Stack

NGINX Plus
API Gateway

AWSAPI
Gateway



Actually selecting an API gateway is a multi-step process that can feel overwhelming—but when you break it down
step-by-step, it becomes manageable. Here are the major items to consider when evaluating API gateway solutions,
divided into four key stages: Planning, Day 0 (deployment), Day 1 (initial setup) and Day 2 (ongoing management).

Planning Considerations
During the planning phase, consider:

Vendor reliability and support: How long has the API gateway vendor been around, which support
options are available, and how much do they cost? Does the vendor offer Service Level Agreements
(SLAs) guaranteeing certain levels of performance and reliability? Can they customize their product to
meet your bespoke business requirements, or do they offer only a generic gateway solution?

Pricingmodel and cost: Which pricing model does the vendor use, and how predictable will it make
your bills? Will you run the risk of wasting money on unused capacity or paying overcharge fees if you
exceed a preset quota? How does your projected total cost of ownership compare across vendors? Be
sure to consider, too, the upfront acquisition cost of the tool (in other words, your CAPEX costs), as well
as ongoing operational (OPEX) costs.

Criteria and features: Does the API gateway provide all of the features you need? As we’ve noted, all
modern gateways provide core request management and security features, but will the solution integrate
with your preferred tool set or enable advanced practices like GitOps?

Checklist: Considerations When Choosing aModern API Gateway

In addition to the differences in features laid out above, API gateways also vary in terms of how they are priced.
Most API gateway vendors use one of the following pricing models:

CPUCore-Based Pricing: The traditional pricing model for gateways is to charge based on the
number of CPUs used to run the gateway. This makes sense if your gateway runs on bare-metal or on-
prem hardware. But in the modern world of virtual CPUs and infrastructure that is constantly scaling up
and down, CPU-based pricing makes it difficult to predict how much you’ll actually pay. As you can see in
the comparison chart, this has become less common.

Request-Based Pricing: Many vendors charge based on the number of requests that pass through a
gateway. While this may seem simple enough, a major downside is that spikes in demand can trigger
overage charges, which may come at a premium. This makes request-based pricing suboptimal if your
traffic volume fluctuates or you experience period surges in demand (as you likely do if, for example,
you’re a retailer who sees spikes during events like Black Friday).

API-based pricing: In this model, vendors charge based on the total number of APIs available in your
system—e.g., if you expose 10 APIs, you are billed for 10 APIs. While this ensures predictable pricing, the
API-based model constrains your team’s architectural decision-making and can force them to create
artificial grouping for the sake of saving money.

Node-Based pricing: Since nodes (meaning the servers that host cloud native apps) are a
fundamental building-block of modern infrastructure, vendors may price API gateways based on the total
nodes used. This model aims to provide predictable pricing that scales up and down with your
infrastructure, while allowing you to avoid having to pay for unused gateway capacity, or for overcharge
charges in the event your gateway serves more requests than you expected.

Understanding API Gateway PricingModels

| 12



| 13

Day 0 Considerations
When evaluating what to expect from the solution on Day 0, consider:

The deploymentmodel: Where can you deploy the solution? Does it only work with a certain type of
infrastructure (such as only on-prem or only on bare metal), or can you run it anywhere? Will it operate
across multi or hybrid cloud environments, or only within a simpler architecture?

Flexibility: How flexible is the solution with regard to the protocols it supports, the tools it integrates
with, and the types of complementary software (such as orchestrators) you’ll leverage to help manage
the gateway?

Adaptability to business requirements: How easily can the solution change as your business
requirements change? For instance, if you deploy new APIs, or you require additional API management
features (like ingress or load balancing) that you did not use when you initially deployed the solution, can
the product adapt with ease? Or would you need to roll out a new version from scratch in order to
support new capabilities or business requirements?

Day 1 Considerations:
When assessing a tool’s value on Day 1, consider:

Ease of use:How simple will the solution be for your team to use on an ongoing basis? For example,
does it support centralized, Git-based configuration management? How much manual effort will the tool
require from your team? Will they view it as a solution that provides real value, or one that becomes just
another tool to manage?

GitOps compatibility: We said it before, but we’ll say it again, because it’s so critical on Day 1:
Consider the extent to which the solutions you are evaluating enable transformative GitOps practices,
making it possible to leverage Git as a “single source of truth” that drives collaboration across the
organization while also providing benefits like transparent configuration auditing and easy configuration
rollbacks.

Extensibility: If you need additional functionality beyond the core features built into the gateway,
how easy is it to extend functionality by installing plugins or add-ons? Is there a large ecosystem of
plugins to connect your gatway to other tools? How much time and effort will it take your engineers to
enable and configure the extensions you want to use?

Day 2 Considerations
Finally, assess how much value your gateway will deliver on Day 2 by considering:

Reliability:Which levels of availability (in other words, how many “9s”) does the gateway vendor
promise, and what is the solution’s track record of delivering high availability and performance? Consider,
too, how many resources the gateway consumes to operate and whether its overhead may negatively
impact your workloads by depriving them of the resources they require.

Observability: Once your gateway is up and running, how easy is it to observe and troubleshoot the
performance of the gateway itself? Does the vendor provide observability tools, visualizations, and
integrations for this task, or are you on your own to figure out how to support the gateway? Can you
easily run traces to pinpoint the source of errors in the event of a gateway performance issue?

Changemanagement: How can admins implement changes, such as upgrading the API gateway to
a new version or modifying its configuration? Is the change management process largely automated, or
do admins need to apply changes manually? Do changes require shutting down the gateway—which
disrupts operations—or can they be applied dynamically, with no downtime?



See the most modern, GitOps-driven
API gateway in action.

WATCH DEMO VIDEO

API gateways share common features, but

no two are created equal when it comes to

their day-to-day operation. This is why

making the right decision is so critical for

success. When evaluating solutions your

goal should be to think not just about short-

term needs and costs, but also which role

your gateway will play in enabling efficient

Day-2 operations over the long term. Make

sure that your solution can fully support

modern automation and cloud native

computing needs, while providing

compatibility with any hybrid or legacy

environments that you operate. Last but not

least, consider how your needs will change

in the future and how easily your gateway

can adapt to them.

| 14

https://info.traefik.io/watch-traefikee-demo?utm_campaign=mofu-prospecting&utm_source=api-gateway-buyers-guide&utm_medium=asset-cta


| 15


